G-functors, G-posets and homotopy decompositions of G-spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

Fixed point theorems for weakly contractive mappings on g-Metric spaces and a homotopy result

In this paper, we give some xed point theorems for '-weak contractivetype mappings on complete G-metric space, which was given by Zaed andSims [1]. Also a homotopy result is given.

متن کامل

A Covering Homotopy Theorem and the Classification of G-spaces.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected].. National Academy of Sciences is collaborating with JSTOR ...

متن کامل

Calibrations on spaces with G×G–structure

In these notes we give an introduction to the concept of spaces with G×G–structure and their structured submanifolds. These objects generalise the classical notion of a calibrated submanifold. Therefore, they are interesting from a string theory viewpoint as they are relevant to describe D–branes in string compactifica-tions on backgrounds with fluxes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 2001

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm169-3-4